CALCULATRICE INTERDITE

Pour tout $n \in \mathbb{N}^*$, on désigne par f_n la fonction suivante :

PARTIE A: Etude de la suite $(U_n) = (f_n(1))$.

- 1. Montrer que (U_n) est croissante et majorée; que peut-on en déduire?
- 2. Montrer que, pour tout $n \in \mathbb{N}^*$, on a :

$$\frac{1}{n+1} \le \ln(n+1) - \ln(n) \le \frac{1}{n}$$

3. En déduire que $\lim_{n\to+\infty} U_n = \ln(2)$.

RTIE B: Etude des variations de f_n .

- 1. Montrer que $f'_n(x) = \begin{cases} \frac{x^n(1-x^n)}{1-x} & \text{si } x \neq 1 \\ n & \text{si } x = 1 \end{cases}$
- 2. Montrer que, si n est un entier pair, on a :

$$f'_n(x) = x^n(1+x)(1+x^2+x^4+\cdots+x^{n-2})$$

3. En déduire les variations de f_n et le nombre de solutions de $f_n(x) = 0$ (on distinguera deux cas : n pair, puis n impair).

PARTIE C: Etude de la suite $(f_n(x))$, où x est un élément fixé de \mathbb{R}_+ .

- 1. Montrer que, pour $0 \le x \le 1$, on a $x^n \le f'_n(x) \le nx^n$.
- 2. Montrer que, pour x > 1, on a $nx^n \le f'_n(x)$.

En remarquant que $f_n(x) = \int_0^x f'_n(t)dt$, trouver, suivant les valeurs de $x \in \mathbb{R}_+$, la limite de $f_n(x)$ lorsque n tend vers $+\infty$.

PARTIE D: Etude de $S_n(x) = \sum_{p=1}^n f_p(x)$ pour $x \in [0, 1[$.

- 1. Vérifier que $S'_n(x) = \frac{x(1-x^n)(1-x^{n+1})}{(1-x)^2(1+x)}$.
- 2. Montrer que $\lim_{n\to+\infty} \int_0^x \frac{t^n}{(1-t)^2(1+t)} dt = 0$.
- 3. En déduire $\lim_{n\to+\infty} S_n(x)$.
- 4. Déterminer les trois réels a, b, c tels que : $\frac{t}{(1-t)^2(1+t)} = \frac{a}{1-t} + \frac{b}{(1-t)^2} + \frac{c}{1+t}.$
- 5. Calculer $\int_0^x \frac{t}{(1-t)^2(1+t)} dt$ et conclure.